Search results for "kernel methods"

showing 10 items of 13 documents

Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

2019

In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…

Computer scienceInfrared Atmospheric Sounding Interferometer (IASI)Spectral Transforms0211 other engineering and technologies02 engineering and technologyData_CODINGANDINFORMATIONTHEORYLossy compressionInfrared atmospheric sounding interferometer (IASI)Kernel MethodsElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringbusiness.industryDimensionality reductionLossy CompressionJPEG 2000Kernel methodsPattern recognitioncomputer.file_formatJoint Photographic Experts Group (JPEG) 2000RegressionUncompressed videoSpectral transformsKernel methodStatistically based retrievalJPEG 2000General Earth and Planetary SciencesLossy compressionArtificial intelligencebusinessStatistically Based RetrievalcomputerSmoothingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Structured Output SVM for Remote Sensing Image Classification

2011

Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…

Computer scienceMultispectral imageTheoretical Computer ScienceSet (abstract data type)Kernel (linear algebra)One-class classificationRemote sensingSupport vector machinesStructured support vector machinePixelContextual image classificationbusiness.industryKernel methodsPattern recognitionLand use classificationSupport vector machineTree (data structure)Kernel methodHardware and ArchitectureControl and Systems EngineeringModeling and SimulationKernel (statistics)Radial basis function kernelSignal ProcessingStructured output learningArtificial intelligenceTree kernelStructured output learning; Support vector machines; Kernel methods; Land use classificationbusinessInformation SystemsJournal of Signal Processing Systems
researchProduct

Estimating biophysical variable dependences with kernels

2010

This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data analysis. The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel method for evaluating statistical dependence. HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We exploit the capabilities of HSIC to explain nonlinear dependences in two remote sensing problems: temperature estimation and chlorophyll concentration prediction from spectra. Results show that, when the relationshi…

Mathematical optimizationHilbert spaceKernel methodsEstimatorDependence estimationMutual informationChlorophyll concentrationNonlinear systemsymbols.namesakeKernel methodNorm (mathematics)symbolsApplied mathematicsRandom variableMathematics2010 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Kernel manifold alignment for domain adaptation

2016

The wealth of sensory data coming from different modalities has opened numerous opportu- nities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. How- ever, multimodal architectures must rely on models able to adapt to changes in the data dis- tribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation proble…

Computer and Information SciencesKernel FunctionsInformation Storage and RetrievalSocial Scienceslcsh:Medicine1100 General Agricultural and Biological SciencesResearch and Analysis MethodsInfographicsTopologyPattern Recognition AutomatedKernel MethodsCognitionLearning and MemoryMemory1300 General Biochemistry Genetics and Molecular BiologyImage Interpretation Computer-AssistedData MiningHumansPsychologyLife Science910 Geography & travelOperator TheoryManifoldslcsh:ScienceObject Recognition1000 MultidisciplinaryApplied MathematicsSimulation and ModelingData Visualizationlcsh:RCognitive PsychologyBiology and Life SciencesEigenvaluesFacial ExpressionAlgebra10122 Institute of GeographyLinear AlgebraData Interpretation StatisticalPhysical SciencesCognitive SciencePerceptionlcsh:QEigenvectorsGraphsAlgorithmsMathematicsResearch ArticleNeuroscience
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation

2017

Source at https://doi.org/10.1109/JSTARS.2016.2641583. Gaussian process regression (GPR) has experienced tremendous success in biophysical parameter retrieval in the past years. The GPR provides a full posterior predictive distribution so one can derive mean and variance predictive estimates, i.e., point-wise predictions and associated confidence intervals. GPR typically uses translation invariant covariances that make the prediction function very flexible and nonlinear. This, however, makes the relative relevance of the input features hardly accessible, unlike in linear prediction models. In this paper, we introduce the sensitivity analysis of the GPR predictive mean and variance functions…

Atmospheric Science010504 meteorology & atmospheric sciencesoceanic chlorophyll prediction0211 other engineering and technologiesLinear prediction02 engineering and technology01 natural sciencesPhysics::Geophysicssymbols.namesakekernel methodsKrigingStatistics14. Life underwaterSensitivity (control systems)Gaussian process regression (GPR)Computers in Earth SciencesGaussian processVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsVDP::Technology: 500::Information and communication technology: 550Spectral bandsKernel methodPosterior predictive distributionsensitivity analysis (SA)Kernel (statistics)symbolsAlgorithm
researchProduct

Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces

2014

This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the $\gamma$ -filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and elect…

Mathematical optimizationComputer Networks and Communications02 engineering and technologyautoregressive and moving-averagekernel methodssymbols.namesakeArtificial Intelligence0202 electrical engineering electronic engineering information engineeringKernel adaptive filterInfinite impulse responseMathematicsfilterrecursiveHilbert space020206 networking & telecommunicationsFilter (signal processing)AdaptiveComputer Science ApplicationsAdaptive filterKernel methodKernel (statistics)symbols020201 artificial intelligence & image processingAlgorithmSoftwareReproducing kernel Hilbert spaceIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Explicit recursivity into reproducing kernel Hilbert spaces

2011

This paper presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces (RKHS). Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define model recursivity in the Hilbert space. The method exploits some properties of functional analysis and recursive computation of dot products without the need of pre-imaging. We illustrate the feasibility of the methodology in the particular case of the gamma-filter, an infinite impulse response (IIR) filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time se…

Mathematical optimizationgamma filterHilbert spaceDot productFilter (signal processing)pre-imagefunctional analysissymbols.namesakekernel methodsKernel methodKernel (statistics)symbolsRecursive filterInfinite impulse responseAlgorithmMathematicsReproducing kernel Hilbert spaceRecursive filter
researchProduct

Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.

2020

Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…

FOS: Computer and information sciencesComputer Science - Machine LearningSupport Vector MachineTheoretical computer scienceComputer scienceEntropyKernel FunctionsNormal Distribution0211 other engineering and technologies02 engineering and technologyMachine Learning (cs.LG)Machine LearningStatistics - Machine LearningSimple (abstract algebra)0202 electrical engineering electronic engineering information engineeringOperator TheoryData ManagementMultidisciplinaryGeographyApplied MathematicsSimulation and ModelingQRDensity estimationKernel methodKernel (statistics)Physical SciencessymbolsMedicine020201 artificial intelligence & image processingAlgorithmsResearch ArticleComputer and Information SciencesScienceMachine Learning (stat.ML)Research and Analysis MethodsKernel MethodsKernel (linear algebra)symbols.namesakeArtificial IntelligenceSupport Vector MachinesHumansEntropy (information theory)Computer SimulationGaussian process021101 geological & geomatics engineeringData VisualizationCorrectionRandom VariablesFunction (mathematics)Probability TheorySupport vector machineAlgebraPhysical GeographyLinear AlgebraEarth SciencesEigenvectorsRandom variableMathematicsEarth SystemsPLoS ONE
researchProduct

Signal-to-noise ratio in reproducing kernel Hilbert spaces

2018

This paper introduces the kernel signal-to-noise ratio (kSNR) for different machine learning and signal processing applications}. The kSNR seeks to maximize the signal variance while minimizing the estimated noise variance explicitly in a reproducing kernel Hilbert space (rkHs). The kSNR gives rise to considering complex signal-to-noise relations beyond additive noise models, and can be seen as a useful signal-to-noise regularizer for feature extraction and dimensionality reduction. We show that the kSNR generalizes kernel PCA (and other spectral dimensionality reduction methods), least squares SVM, and kernel ridge regression to deal with cases where signal and noise cannot be assumed inde…

Noise model02 engineering and technologySNR010501 environmental sciences01 natural sciencesKernel principal component analysisSenyal Teoria del (Telecomunicació)Signal-to-noise ratioArtificial Intelligence0202 electrical engineering electronic engineering information engineeringHeteroscedastic0105 earth and related environmental sciencesMathematicsNoise (signal processing)Dimensionality reductionKernel methodsSignal classificationSupport vector machineKernel methodKernel (statistics)Anàlisi funcionalSignal ProcessingFeature extraction020201 artificial intelligence & image processingSignal-to-noise ratioComputer Vision and Pattern RecognitionAlgorithmSoftwareImatges ProcessamentReproducing kernel Hilbert spaceCausal inference
researchProduct